45 -4 (66) 2024 - Toshev B.B. - MARKERS OF STRUCTURAL AND FUNCTIONAL MYOCARDIAL REMODELING AND DETECTING THE EFFICIENCY OF TREATMENT OF ENDOTHELIAL DYSFUNCTION
MARKERS OF STRUCTURAL AND FUNCTIONAL MYOCARDIAL REMODELING AND DETECTING THE EFFICIENCY OF TREATMENT OF ENDOTHELIAL DYSFUNCTION
Toshev B.B. Samarkand State Medical University Uzbekistan
Resume
Cardiovascular disease is currently the most common cause of death in adults. Therefore, reliable and effective markers, in order to monitor coronary heart disease, as well as for therapeutic control, is one of the highest priorities in medicine. The aim of our study is to use echocardiographic markers to identify echocardiographic characteristics of patients with myocardial infarction and to correlate with the clinical picture, as well as to monitor the therapeutic effect of trimetazidine.
Keywords:Cadiomyocytes, coronary heart disease, myocardial infarction, echocardiography, trimetazidine.
First page
253
Last page
262
For citation: Toshev B.B. - MARKERS OF STRUCTURAL AND FUNCTIONAL MYOCARDIAL REMODELING AND DETECTING THE EFFICIENCY OF TREATMENT OF ENDOTHELIAL DYSFUNCTION//New Day in Medicine 4(66)2024 253-262 https://newdayworldmedicine.com/en/article/3758
List of References
- Walker C.A., Spinale F.G. The structure and function of the cardiac myocyte: A review of fundamental concepts. J. Thorac. Cardiovasc. Surg. 1999; 375–382. doi: 10.1016/S0022-5223(99)70233-3.
- Pittman R.N. Regulation of Tissue Oxygenation. Morgan & Claypool Life Sciences; San Rafael, CA, USA: 2011. Integrated Systems Physiology: From Molecule to Function to Disease. [Google Scholar]
- Ribeiro A.J.S., Ang Y.-S., Fu J.-D., Rivas R.N., Mohamed T.M.A., Higgs G.C., Srivastava D., Pruitt B.L. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc. Natl. Acad. Sci. USA. 2015; doi: 10.1073/pnas.1508073112.
- Langer G.A., Frank J.S., Rich T.L., Orner F.B. Calcium exchange, structure, and function in cultured adult myocardial cells. Am. J. Physiol. 1987; 252:H314–H324. doi: 10.1152/ajpheart.1987.252.2.H314.
- Langer G.A., Frank J.S., Philipson K.D. Ultrastructure and calcium exchange of the sarcolemma, sarcoplasmic reticulum and mitochondria of the myocardium. Pharmacol. Ther. 1982; 331–376. doi: 10.1016/0163-7258(82)90006-7.
- McCain M.L., Parker K.K. Mechanotransduction: The role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflüg. Arch.- Eur. J. Physiol. 2011; 89–104. doi: 10.1007/s00424-011-0951-4.
- Powers J.D., Yuan C.-C., McCabe K.J., Murray J.D., Childers M.C., Flint G.V., Moussavi-Harami F., Mohran S., Castillo R., Zuzek C., et al. Cardiac myosin activation with 2-deoxy-ATP via increased electrostatic interactions with actin. Proc. Natl. Acad. Sci. USA. 2019; 11502–11507. doi: 10.1073/pnas.1905028116.
- Moran A., Forouzanfar M., Sampson U., Chugh S., Feigin V., Mensah G. The epidemiology of cardiovascular diseases in sub-Saharan Africa: The Global Burden of Diseases, Injuries and Risk Factors 2010 Study. Prog. Cardiovasc. Dis. 2013; 234–239. doi: 10.1016/j.pcad.2013.09.019.
- Lauer M.S. Advancing cardiovascular research. Chest. 2012;141:500–505. doi: 10.1378/chest.11-2521.
- Institute of Medicine (US) Committee on Social Security Cardiovascular Disability Criteria. Cardiovascular Disability: Updating the Social Security Listings. Washington (DC): National Academies Press (US); 2010. 7, Ischemic Heart Disease. Available from: https://www.ncbi.nlm.nih.gov/books/NBK209964/
- Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol 8: 292-300, 2011.
- Jennings RB, Steenbergen C Jr. Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol 47: 727-749, 1985.
- Frangogiannis NG. Pathophysiology of Myocardial Infarction. Compr Physiol. 2015 Sep 20;5(4):1841-75. doi: 10.1002/cphy.c150006. PMID: 26426469.
- Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 100: 1363-1372, 1997.
- Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74: 86-107, 1996.
- Gottlieb RA. Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 16: 233-238, 2011.
- Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94: 1621-1628, 1994.
- Sam F, Sawyer DB, Chang DL, Eberli FR, Ngoy S, Jain M, Amin J, Apstein CS, Colucci WS. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol 279: H422-H428, 2000.
- Luo K., Long H., Xu B. Reduced apoptosis after acute myocardial infarction by simvastatin. Cell Biochem. Biophys. 2015; 71:735–740. doi: 10.1007/s12013-014-0257-1. [PubMed] [CrossRef] [Google Scholar]
- Hung J., Teng T.-H.K., Finn J., Knuiman M., Briffa T., Stewart S., Sanfilippo F.M., Ridout S., Hobbs M. Trends from 1996 to 2007 in incidence and mortality outcomes of heart failure after acute myocardial infarction: A population-based study of 20,812 patients with first acute myocardial infarction in Western Australia. J. Am. Heart Assoc. 2013; doi: 10.1161/JAHA.113.000172.
file
download