87 -3 (77) 2025 - Xolova N.F., Nasriddinova K.P. - THE CONCEPT OF TORCH INFECTIONS, ASPECTS OF REPRODUCTIVE LOSSES: DATA ANALYSIS

THE CONCEPT OF TORCH INFECTIONS, ASPECTS OF REPRODUCTIVE LOSSES: DATA ANALYSIS

Xolova N.F. - Bukhara State Medical Institute named after Abu Ali ibn Sina, Andijan State Medical Institute

Nasriddinova K.P. - Bukhara State Medical Institute named after Abu Ali ibn Sina, Andijan State Medical Institute

Yakubova O.A. - Bukhara State Medical Institute named after Abu Ali ibn Sina, Andijan State Medical Institute

Resume

The term TORCH is used to denote the most common perinatal infections, where: (T) refers to toxoplasmosis, (O) means "other" and includes syphilis, chickenpox, parvovirus B19, Zika virus (ZIKV) and malaria among others, (R) refers to rubella, (C) refers to cytomegalovirus infection and (H) to herpes simplex virus infections. Among the major abnormalities found in neonates exposed to congenital infections are central nervous system (CNS) involvement, microcephaly, hearing loss, and ophthalmologic abnormalities, all of which require regular follow-up to monitor their progression. Protein changes such as mutations, post-translational modifications, abundance, structure, and function can indicate a pathological condition before symptoms appear, allowing for early diagnosis and understanding of a specific disease or infection.

Keywords: TORCH infections, pregnancy, congenital anomalies, spectrometry.

First page

498

Last page

505

For citation:Xolova N.F., Nasriddinova K.P., Yakubova O.A. - THE CONCEPT OF TORCH INFECTIONS, ASPECTS OF REPRODUCTIVE LOSSES: DATA ANALYSIS//New Day in Medicine 3(77)2025 498-505 https://https://newdayworldmedicine.com/en/new_day_medicine/3-77-2025

List of References

  1. Pereira, L. Congenital viral infection: Traversing the uterine-placental interface. Annu. Rev. Virol. 2018, 5, 273–299.
  2. Gude, N.M.; Roberts, C.T.; Kalionis, B.; King, R.G. Growth and function of the normal human placenta. Thromb. Res. 2004, 114, 397–407.
  3. Racicot, K.; Mor, G. Risks associated with viral infections during pregnancy. J. Clin. Investig. 2017, 127, 1591–1599.
  4. Campos, G.S.; Bandeira, A.C.; Sardi, S.I. Zika Virus Outbreak, Bahia, Brazil. Emerg. Infect. Dis. 2015;21:1885-1886.
  5. Adams Waldorf, K.M.; Nelson, B.R.; Stencel-Baerenwald, J.E.; Studholme, C.; Kapur, R.P.; Armistead, B.; Walker, C.L.; Merillat, S.; Vornhagen, J.; Tisoncik-Go, J.; et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 2018, 24, 368–374.
  6. Stegmann, B.J.; Carey, J.C. TORCH Infections. Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections. Curr. Womens Health Rep. 2002, 2, 253–258.
  7. Costa, M.L.; de Moraes Nobrega, G.; Antolini-Tavares, A. Key Infections in the Placenta. Obstet. Gynecol. Clin. N. Am. 2020, 47, 133–146.
  8. Martin, G.P.; Marriott, C.; Kellaway, I.W. The effect of natural surfactants on the pheological properties of mucus. J. Pharm. Pharmacol. 1976, 28, 76.
  9. León-Juárez, M.; Martínez-Castillo, M.; González-García, L.D.; Helguera-Repetto, A.C.; Zaga-Clavellina, V.; García-Cordero, J.; Flores-Pliego, A.; Herrera-Salazar, A.; Vázquez-Martínez, E.R.; Reyes-Muñoz, E. Cellular and molecular mechanisms of viral infection in the human placenta. Pathog. Dis. 2017, 75.
  10. Koi, H.; Zhang, J.; Makrigiannakis, A.; Getsios, S.; MacCalman, C.D.; Kopf, G.S.; Strauss, J.F.; Parry, S. Differential expression of the coxsackievirus and adenovirus receptor regulates adenovirus infection of the placenta. Biol. Reprod. 2001, 64, 1001–1009.
  11. Feire, A.L.; Koss, H.; Compton, T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl. Acad. Sci. USA 2004, 101, 15470–15475.
  12. Aagaard, K.M.; Lahon, A.; Suter, M.A.; Arya, R.P.; Seferovic, M.D.; Vogt, M.B.; Hu, M.; Stossi, F.; Mancini, M.A.; Harris, R.A.; et al. Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication. Sci. Rep. 2017, 7, 41389.
  13. Parry, S.; Holder, J.; Strauss, J.F. Mechanisms of trophoblast-virus interaction. J. Reprod. Immunol. 1997, 37, 25–34.
  14. Ranger-Rogez, S.; Alain, S.; Denis, F. Virus des hépatites: Transmission mère-enfant. Pathol. Biol. 2002, 50, 568–575.
  15. Robinson, D.P.; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 2012, 62, 263–271.
  16. Menendez, C. Malaria during pregnancy: A priority area of malaria research and control. Parasitol. Today 1995, 11, 178–183.
  17. Szekeres-Bartho, J.; Faust, Z.S.; Varga, P.; Szereday, L.; Kelemen, K. The Immunological Pregnancy Protective Effect of Progesterone Is Manifested via Controlling Cytokine Production. Am. J. Reprod. Immunol. 1996, 35, 348–351.
  18. Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9, 1931.
  19. Marzi, M.; Vigano, A.; Trabattoni, D.; Villa, M.L.; Salvaggio, A.; Clerici, E.; Clerici, M. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin. Exp. Immunol. 1996, 106, 127–133.
  20. Orton, D.; Doucette, A. Proteomic Workflows for Biomarker Identification Using Mass Spectrometry—Technical and Statistical Considerations during Initial Discovery. Proteomes 2013, 1, 109–127.

    file

    download