14 -12 (86) 2025 - Rustamov M.K. - EXPERIMENTAL MODELS OF TUBERCULOSIS INFECTION: MORPHOMETRIC CHANGES IN THE LIVER
EXPERIMENTAL MODELS OF TUBERCULOSIS INFECTION: MORPHOMETRIC CHANGES IN THE LIVER
Rustamov M.K. - Bukhara State Medical Institute named after Abu Ali ibn Sina
Resume
This literature review focuses on the impact of Mycobacterium tuberculosis infection on the liver and evaluates morphometric alterations observed in experimental models. Tuberculosis affects the liver secondarily, leading to morphological changes such as hepatocyte dystrophy, granulomatous infiltration, necrosis, and lipid accumulation. On a molecular level, activation of IFN signaling and PPARγ is associated with metabolic disturbances, reduced gluconeogenesis, and altered immune responses. Contemporary studies highlight the interaction between Mtb and hepatic macrophages as well as the role of LXR receptors in protective mechanisms. The review emphasizes existing knowledge gaps, particularly the scarcity of experimental models and the absence of standardized morphometric protocols in Uzbekistan. Future studies should incorporate organoid systems and artificial intelligence–based morphometric tools.
Keywords: tuberculosis, liver morphometry, experimental models, hepatocyte dystrophy, necrosis, lipid metabolism, IFN signaling, PPARγ, granulomatous inflammation.
First page
73
Last page
78
For citation:Rustamov M.K. - EXPERIMENTAL MODELS OF TUBERCULOSIS INFECTION: MORPHOMETRIC CHANGES IN THE LIVER//New Day in Medicine 12(86)2025 73-78 https://newdayworldmedicine.com/en/new_day_medicine/12-86-2025
List of References
- Alvarez, S., Carpio, R. (2005). Hepatobiliary tuberculosis. Digestive Diseases and Sciences, 28, 193-200. https://doi.org/10.1007/bf01295113.
- Das, M., Savidge, B., Pearl, J., Yates, T., Miles, G., Pareek, M., Haldar, P., Cooper, A. (2024). Altered hepatic metabolic landscape and insulin sensitivity in response to pulmonary tuberculosis. PLOS Pathogens, 20. https://doi.org/10.1371/journal.ppat.1012565.
- Metushi, I., Uetrecht, J., Phillips, E. (2016). Mechanism of isoniazid‐induced hepatotoxicity: then and now. British Journal of Clinical Pharmacology, 81, 1030 - 1036. https://doi.org/10.1111/bcp.12885.
- Kim, J., Nam, W., Kim, S., Kwon, O., Seung, E., Jo, J., Shresha, R., Lee, T., Jeon, T., Ki, S., Lee, H., & Lee, S. (2017). Mechanism Investigation of Rifampicin-Induced Liver Injury Using Comparative Toxicoproteomics in Mice. International Journal of Molecular Sciences, 18. https://doi.org/10.3390/ijms18071417.
- Han, M., Liang, L., Liu, L., Yue, J., Zhao, Y., & Xiao, H. (2014). Liver X Receptor Gene Polymorphisms in Tuberculosis: Effect on Susceptibility. PLoS ONE, 9. https://doi.org/10.1371/journal.pone.0095954.
- Nawaz, A., Malik, K., Alvi, A., Ali, B. (2016). Hepatic Tuberculosis in an Immunocompetent Patient- a Diagnostic Challenge: 1990. The American Journal of Gastroenterology, 111. https://doi.org/10.14309/00000434-201610001-01990.
- Tang, S., Lv, X., Zhang, Y., Wu, S., Yang, Z., Xia, Y., Tu, D., Deng, P., , Y., Chen, D., Zhan, S. (2013). Cytochrome P450 2E1 Gene Polymorphisms/Haplotypes and Anti-Tuberculosis Drug-Induced Hepatitis in a Chinese Cohort. PLoS ONE, 8. https://doi.org/10.1371/journal.pone.0057526.
- Zhang, J., Zhou, W., , S., Kang, Y., Yang, W., Peng, X., Zhou, Y., Deng, F. (2022). Combined electronic medical records and gene polymorphism characteristics to establish an anti-tuberculosis drug-induced hepatic injury (ATDH) prediction model and evaluate the prediction value. Annals of Translational Medicine, 10. https://doi.org/10.21037/atm-22-4551.
- Yoon, J., Jang, D., Cho, S., Lee, C., Noh, S., Seo, S., Yu, J., Chung, H., Han, K., Kwon, S., Han, D., Oh, J., Jang, I., Kim, S., Jee, Y., Lee, H., Park, D., Sohn, J., Yoon, H., Kim, C., Lee, J., Kim, S., Lee, M. (2024). Synergistic toxicity with copper contributes to NAT2-associated isoniazid toxicity. Experimental & Molecular Medicine, 56, 570 - 582. https://doi.org/10.1038/s12276-024-01172-8.
- Tweed, C., Wills, G., Crook, A., Dawson, R., Diacon, A., Louw, C., McHugh, T., Mendel, C., Meredith, S., Mohapi, L., Murphy, M., Murray, S., Murthy, S., Nunn, A., Phillips, P., Singh, K., Spigelman, M., Gillespie, S. (2018). Liver toxicity associated with tuberculosis chemotherapy in the REMoxTB study. BMC Medicine, 16. https://doi.org/10.1186/s12916-018-1033-7.
- Zhai, W., Wu, F., Zhang, Y., Fu, Y., & Liu, Z. (2019). The Immune Escape Mechanisms of Mycobacterium Tuberculosis. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20020340.
- Lewinsohn, D., Leonard, M., Lobue, P., Cohn, D., Daley, C., Desmond, E., Keane, J., Lewinsohn, D., Loeffler, A., Mazurek, G., O'brien, R., Pai, M., Richeldi, L., Salfinger, M., Shinnick, T., Sterling, T., Warshauer, D., Woods, G. (2017). Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clinical Infectious Diseases, 64, e1–e33. https://doi.org/10.1093/cid/ciw694.
- Weisz, N., Gill, T., Penn, H., & Byng-Maddick, R. (2015). FRI0124 Hepatotoxicity of Latent Anti-Tuberculosis Treatment Prior to Anti-TNF Therapy in Patients with Inflammatory Arthritis on DMARDs and Nsaids. Annals of the Rheumatic Diseases, 74, 465 - 466. https://doi.org/10.1136/annrheumdis-2015-eular.2433.
- [Guidelines for diagnosis and management of drug-induced liver injury caused by anti-tuberculosis drugs (2024 version)].. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases, 2024;47(11):1069-1090. https://doi.org/10.3760/cma.j.cn112147-20240614-00338.
- He, L., Gao, L., Shi, Z., Li, Y., Zhu, L., Li, S., Zhang, P., Zheng, G., Ren, Q., Li, Y., Hu, B., & Feng, F. (2015). Involvement of Cytochrome P450 1A1 and Glutathione S-Transferase P1 Polymorphisms and Promoter Hypermethylation in the Progression of Anti-Tuberculosis Drug-Induced Liver Injury: A Case–Control Study. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0119481.
- Freire, I., Fielding, K., Moore, D. (2023). Does diabetes mellitus comorbidity increase the risk of drug-induced liver injury during tuberculosis treatment?. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0286306.
- Ayupov, A. A., Tolipov, A. N. (2021). Morphological changes of the liver in chronic infectious diseases: A comparative analysis. Journal of Biomedicine and Practice, 2021;7(4):88-95.
- Turdikulov I.T., Karimov M.K. (2020). Pathogenetic mechanisms of liver dysfunction in pulmonary tuberculosis. // Central Asian Medical Journal, 2020;26(3):45-52.
- Abdullaev, B. R., Rakhimova, S. S. (2021). Experimental modeling of chronic inflammatory liver injury in laboratory animals. // Bulletin of Tashkent Medical Academy, 2021;2(1):112-118.
- Khasanov, D. M., Usmanova, G. S. (2022). Digital morphometric assessment of hepatocellular damage in infectious diseases. Uzbek Journal of Medical Sciences, 3(2), 67–74.
file
download