

TIBBIYOTDA YANGI KUN

Ilmiy referativ, marifiy-ma'naviy jurnal

AVICENNA-MED.UZ

12 (74) 2024

Сопредседатели редакционной коллегии:

Ш. Ж. ТЕШАЕВ, А. Ш. РЕВИШВИЛИ

Ред. коллегия:

М.И. АБДУЛЛАЕВ

А.А. АБДУМАЖИДОВ

Р.Б. АБДУЛЛАЕВ

Л.М. АБДУЛЛАЕВА

А.Ш. АБДУМАЖИДОВ

М.А. АБДУЛЛАЕВА

Х.А. АБДУМАДЖИДОВ

Б.З. АБДУСАМАТОВ

М.М. АКБАРОВ

Х.А. АКИЛОВ

М.М. АЛИЕВ

С.Ж. АМИНОВ

Ш.Э. АМОНОВ

Ш.М. АХМЕЛОВ Ю.М. АХМЕДОВ

С.М. АХМЕДОВА

Т.А. АСКАРОВ

М.А. АРТИКОВА Ж.Б. БЕКНАЗАРОВ (главный редактор)

Е.А. БЕРДИЕВ

Б.Т. БУЗРУКОВ

Р.К. ДАДАБАЕВА

М.Н. ДАМИНОВА

К.А. ДЕХКОНОВ

Э.С. ДЖУМАБАЕВ

А.А. ДЖАЛИЛОВ

Н.Н. ЗОЛОТОВА

А.Ш. ИНОЯТОВ

С. ИНДАМИНОВ

А.И. ИСКАНДАРОВ

А.С. ИЛЬЯСОВ

Э.Э. КОБИЛОВ

A.M. MAHHAHOB

Д.М. МУСАЕВА

Т.С. МУСАЕВ

М.Р. МИРЗОЕВА

Ф.Г. НАЗИРОВ Н.А. НУРАЛИЕВА

Ф.С. ОРИПОВ

Б.Т. РАХИМОВ

Х.А. РАСУЛОВ

Ш.И. РУЗИЕВ

С.А. РУЗИБОЕВ

С.А.ГАФФОРОВ

С.Т. ШАТМАНОВ (Кыргызстан)

Ж.Б. САТТАРОВ

Б.Б. САФОЕВ (отв. редактор)

И.А. САТИВАЛДИЕВА

Ш.Т. САЛИМОВ

Д.И. ТУКСАНОВА

М.М. ТАДЖИЕВ

А.Ж. ХАМРАЕВ

Д.А. ХАСАНОВА

А.М. ШАМСИЕВ А.К. ШАДМАНОВ

Н.Ж. ЭРМАТОВ

Б.Б. ЕРГАШЕВ

Н.Ш. ЕРГАШЕВ

И.Р. ЮЛДАШЕВ

Д.Х. ЮЛДАШЕВА

А.С. ЮСУПОВ

Ш.Ш. ЯРИКУЛОВ

М.Ш. ХАКИМОВ

Д.О. ИВАНОВ (Россия)

К.А. ЕГЕЗАРЯН (Россия)

DONG JINCHENG (Китай)

КУЗАКОВ В.Е. (Россия)

Я. МЕЙЕРНИК (Словакия)

В.А. МИТИШ (Россия)

В И. ПРИМАКОВ (Беларусь)

О.В. ПЕШИКОВ (Россия) А.А. ПОТАПОВ (Россия)

А.А. ТЕПЛОВ (Россия)

Т.Ш. ШАРМАНОВ (Казахстан)

А.А. ЩЕГОЛОВ (Россия)

С.Н ГУСЕЙНОВА (Азарбайджан)

Prof. Dr. KURBANHAN MUSLUMOV(Azerbaijan) Prof. Dr. DENIZ UYAK (Germany)

тиббиётда янги кун новый день в медицине **NEW DAY IN MEDICINE**

Илмий-рефератив, матнавий-матрифий журнал Научно-реферативный, духовно-просветительский журнал

УЧРЕДИТЕЛИ:

БУХАРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ ИНСТИТУТ ООО «ТИББИЁТДА ЯНГИ КУН»

Национальный медицинский исследовательский центр хирургии имени А.В. Вишневского является генеральным научно-практическим консультантом редакции

Журнал был включен в список журнальных изданий, рецензируемых Высшей Аттестационной Комиссией Республики Узбекистан (Протокол № 201/03 от 30.12.2013 г.)

РЕДАКЦИОННЫЙ СОВЕТ:

М.М. АБДУРАХМАНОВ (Бухара)

Г.Ж. ЖАРЫЛКАСЫНОВА (Бухара)

А.Ш. ИНОЯТОВ (Ташкент)

Г.А. ИХТИЁРОВА (Бухара)

Ш.И. КАРИМОВ (Ташкент)

У.К. КАЮМОВ (Тошкент)

Ш.И. НАВРУЗОВА (Бухара)

А.А. НОСИРОВ (Ташкент)

А.Р. ОБЛОКУЛОВ (Бухара)

Б.Т. ОДИЛОВА (Ташкент)

Ш.Т. УРАКОВ (Бухара)

12 (74)

ноябрь

www.bsmi.uz https://newdaymedicine.com E:

Тел: +99890 8061882

ndmuz@mail.ru

Received: 20.10.2024, Accepted: 02.11.2024, Published: 10.11.2024

УДК 613.954.4/ 613.27/ 613.22

МОРФОЛОГИЧЕСКИЕ ПРОЯВЛЕНИЯ МИКРОЭЛЕМЕНТОЗА (НЕДОСТАТКА МИКРОЭЛЕМЕНТОВ) В СЕРДЦЕ

Ким Ирина Леонидовна <u>https://orcid.org/0009-0005-4203-4895</u>

Бухарский государственный медицинский институт имени Абу Али ибн Сины, Узбекистан, г. Бухара, ул. А. Навои. 1 Тел: +998 (65) 223-00-50 e-mail: info@bsmi.uz

√ Резюме

Статья посвящена исследованию морфологических проявлений микроэлементоза, особенно в контексте сердечно-сосудистой системы. Микроэлементы, такие как магний, цинк, селен и железо, играют ключевую роль в поддержании нормальной функции сердца и его структуры. Недостаток этих микроэлементов приводит к различным патологическим изменениям, включая гипертрофию миокарда, воспалительные процессы и кардиомиопатию. В работе рассматриваются механизмы, через которые дефицит микроэлементов влияет на морфологию сердца, а также клинические проявления этих изменений. Особое внимание уделяется симптоматике, диагностике и профилактике недостатка микроэлементов, что подчеркивает важность их достаточного уровня для сохранения здоровья сердечно-сосудистой системы. Заключение статьи акцентирует внимание на необходимости дальнейших исследований в этой области, чтобы более полно понять взаимосвязь между микроэлементами и морфологическими изменениями сердца, а также разработать эффективные стратегии профилактики и коррекции дефицита микроэлементов

Ключевые слова: микроэлементоз, белые беспородные крысы, морфология сердца, магний, селен, иинк

MORPHOLOGICAL MANIFESTATIONS OF MICROELEMENTOSIS (LACK OF TRACE ELEMENTS) IN THE HEART

Kim Irina Leonidovna

Bukhara State Medical Institute named after Abu Ali ibn Sina, Uzbekistan, Bukhara, st. A. Navoi. 1 Tel: +998 (65) 223-00-50 e-mail: info@bsmi.uz

✓ Resume

The article is devoted to the study of morphological manifestations of microelementosis, especially in the context of the cardiovascular system. Trace elements such as magnesium, zinc, selenium and iron play a key role in maintaining normal heart function and structure. The lack of these trace elements leads to various pathological changes, including myocardial hypertrophy, inflammatory processes and cardiomyopathy. The paper examines the mechanisms through which micronutrient deficiency affects the morphology of the heart, as well as the clinical manifestations of these changes. Special attention is paid to the symptoms, diagnosis and prevention of micronutrient deficiency, which emphasizes the importance of their sufficient level to maintain the health of the cardiovascular system. The conclusion of the article focuses on the need for further research in this area in order to better understand the relationship between trace elements and morphological changes in the heart, as well as to develop effective strategies for the prevention and correction of micronutrient deficiency

Key words: microelementosis, white mongrel rats, morphology of the heart, magnesium, selenium, zinc

ЮРАКДАГИ МИКРОЕЛЕМЕНТОЗНИНГ МОРФОЛОГИК КЎРИНИШЛАРИ (МИКРОЭЛЕМЕНТЛАРНИНГ ЕТИШМАСЛИГИ)

Ким Ирина Леонидовна

Абу али ибн Сино номидаги Бухоро давлат тиббиёт институти Ўзбекистон, Бухоро ш., А.Навоий кўчаси. 1 Тел: +998 (65) 223-00-50 e-mail: info@bsmi.uz

✓ Резюме

Мақола микрэлементознинг морфологик кўринишларини, айниқса юрак-қон томир тизими контекстида ўрганишга бағишланган. Магний, цинк, селен ва темир каби микроэлементлар юракнинг нормал ишлаши ва тузилишини саклашда асосий рол ўйнайди. Ушбу микроэлементларнинг етишмаслиги турли хил патологик ўзгаришларга, шу жумладан миокард гипертрофияси, яллигланиш жараёнлари ва кардиомиопатияга олиб келади. Микронутриент танқислиги юрак морфологияси, шунингдек, бу ўзгаришлар клиник механизмларини кўринишларига таъсир оркали текширади. Микрелементлар етишмаслигининг белгилари, диагностикаси ва олдини олишга алохида эътибор қаратилади, бу уларнинг юрак-қон томир тизимининг соглигини сақлаш учун етарли даражада мухимлигини таъкидлайди. Маколанинг хулосаси из елементлари ва юракдаги морфологик ўзгаришлар ўртасидаги муносабатни яхширок тушуниш, шунингдек, микроелементлар етишмаслигининг олдини олиш ва тузатиш бўйича самарали стратегияларни ишлаб чикиш үчүн үшбү сохада күшимча тадкикотлар утказиш зарурлигига қаратилган

Калит сўзлар: микроэлементоз, оқ зотсиз каламушлари, юрак морфологияси, магний, селен, цинк

Актуальность

Н ормальное состояние и функционирование сердечно - сосудистой системы зависит от множества причин. Большую роль в нормальной работе системы играют микроэлементы и витамины. Они обеспечивают постоянство клеточного состава, работу кардиомиоцитов, процессов сокращения сердечной мышечной ткани, проведении нервного импульса, состояние сосудистой стенки. К наиболее значимым микроэлементам, влияющим на функционирование сердечно-сосудистой системы, относятся калий (К), натрий (Na), кальций (Са), магний (Мg), фосфор (Р), железо (Fe), цинк (Zn), марганец (Мn), медь (Сu).

Калий является основным внутриклеточным катионом, участвующим в водно-электролитном обмене, поддержании кислотно-основного равновесия. Он взаимодействует с другими электролитами (натрием, хлором, бикарбонатом) и участвует в поддержании заряда мембран клеток, механизмах возбуждения мышечных и нервных волокон. Натрий представляет собой катион, который присутствует во всех жидкостях и тканях организма человека. В наибольшей концентрации, около 96 %, он содержится во внеклеточной жидкости и крови. Изменение уровня калия в сыворотке крови имеет важное клиническое значение, требует своевременных мер диагностики и лечения. Гипокалиемия и гиперкалиемия характеризуются изменениями со стороны работы сердечно-сосудистой системы и имеют специфические проявления при электрокардиографическом исследовании. Повышение уровня калия может приводить к серьезным нарушениям ритма, вплоть до прогрессирующей фибрилляции желудочков сердца.

Кальций к числу важнейших минералов организма человека. Около 99% ионизированного кальция сосредоточено в костях и лишь менее 1% циркулирует в крови. Концентрация кальция в цитоплазме значительно превышает его количество во внеклеточной жидкости. Он необходим для нормального сокращения сердечной мышцы, поперечнополосатых мышц, для передачи нервного импульса, является компонентом свертывающей системы крови, каркаса костной ткани и зубов. Нарушение регуляции метаболизма кальция могут приводить к отклонениям в проводимости нервного импульса, мышечной возбудимости, сократительной способности миокарда и гладких мышц сосудистой стенки. Магний также является компонентом костной ткани, участвует в механизмах мышечных сокращений и проведении нервного импульса. По ряду эффектов является антагонистом кальция. При гипомагниемии возможно появление нарушений сердечного ритма в виде желудочковой экстрасистолии. При гипермагниемии – возникновение брадикардии, атриовентрикулярных блокад. Фосфор в составе органических и неорганических соединений участвует в метаболизме костной ткани, осуществлении нервно-мышечных сокращений, поддержании кислотно-щелочного баланса, в энергетическом обмене. Около 70-80% фосфора в организме связано с кальцием, формируя каркас костей и зубов, 10 % находится в мышцах и около 1% в нервной ткани. Клиническая симптоматика при гиперфосфатемии, как правило, обусловлена одновременно развивающейся гипокальциемией.

Железо является микроэлементом, входящим в состав гемоглобина, миоглобина, некоторых ферментов и других белков, которые участвуют в обеспечении тканей кислородом. В плазме крови ионы железа связаны с транспортным белком трансферрином. При дефиците железа развивается такое состояние, как анемия. Она характеризуется слабостью, головокружением, головными болями, одышкой. При повышении концентрации железа наряду с общими симптомами могут отмечаться нарушения сердечного ритма. Цинк – это микроэлемент, необходимый для нормального роста и дифференцировки клеток. Он является кофактором множества ферментов, входит в состав некоторых транскрипционных факторов и стабилизирует клеточные мембраны. При увеличении концентрации цинка отмечаются слабость, лихорадка, симптомы общей интоксикации организма, миалгии, нарушение сердечной деятельности. Марганец – это микроэлемент, необходимый для нормального формирования костной ткани, синтеза белков и регуляции клеточного метаболизма. При его повышении в крови могут отмечаться симптомы общей интоксикации, поражается множество систем и органов, в том числе печень, нервная и сердечно-сосудистая система. Отмечаются нарушения нервно-мышечной проводимости, характеризующиеся различными нарушениями ритма. Медь входит в состав многих ферментов, которые принимают участие в метаболизме железа, формировании соединительной ткани, выработке энергии на клеточном уровне, в нормальном функционировании нервной системы. При избытке меди отмечаются симптомы интоксикации. Недостаток меди может привести к развитию тяжелой анемии, характеризующейся наличием дефектных эритроцитов.

Витамины — это органические низкомолекулярные биологические вещества, которые не синтезируются в организме человека и поэтому должны поступать с пищей. Они обеспечивают нормальные метаболические процессы в организме и играют большую роль в профилактике и лечении многих заболеваний. По биохимическим свойствам все витамины делятся на две группы: жирорастворимые и водорастворимые. Жирорастворимые витамины способны всасываться в кишечнике только при наличии липидов и желчных кислот. Водорастворимые витамины не накапливаются в тканях, и их избыток удаляется из организма с мочой.

Витамин В1 (тиамин) относится к водорастворимому витамину, является кофактором в реакциях декарбоксилирования аминокислот, превращения пирувата в ацетилкоэнзим а играет роль в углеводном обмене; принимает участие в передаче нервного импульса. Нарушения в сердечно-сосудистой системе проявляются одышкой, тахикардией, повышением артериального давления, отеками.

Витамин В5 (пантотеновая кислота) является водорастворимым, входит в состав коэнзима А, необходимого для обмена жиров, углеводов, синтеза холестерола, стероидных гормонов, гемоглобина. При недостатке этого витамина поражаются практически все системы и органы организма человека, развивается слабость, потеря веса, анемии, появляются симптомы поражения нервной и костно-мышечной систем.

Витамин В9 (фолиевая кислота) — водорастворимый витамин, необходимый для синтеза нуклеиновых кислот, некоторых аминокислот, белков, фосфолипидов, повышает всасывание витамина В12. При нехватке фолиевой кислоты могут отмечаться нарушения в виде мегалобластной анемии, глоссита, эзофагита, атрофического гастрита, энтерита. Отмечается слабость сосудистой стенки, проявляющаяся кровоточивостью слизистых оболочек.

Витамин В12 (цианокобаламин) относится к группе водорастворимых витаминов. Он необходим для синтеза нуклеиновых кислот, образования эритроцитов, клеточного и тканевого обменов, участвует в поддержании нормального функционирования нервной системы. Недостаточность витамина приводит к развитию злокачественной (пернициозной) макроцитарной анемии.

Витамин Е (токоферол) представляет собой группу из нескольких соединений, относится к группе жирорастворимых витаминов и содержится в растительных маслах, зернах злаковых растений, орехах, зеленых овощах. Данный витамин входит в состав всех органов и тканей организма человека, больше всего его в жировой ткани, печени, мышцах и нервной системе.

Витамин Е обладает антиоксидантной функцией, предохраняет от окисления ненасыщенные жирные кислоты, защищая от повреждения липидные структуры клеточных мембран и субклеточные структуры. Участвует в образовании гемоглобина, снижает риск развития атеросклероза и тромбозов. При дефиците данного витамина, в первую очередь, страдают ткани

с высокой пролиферативной активностью и высокой интенсивностью процессов окисления: нервная ткань, мышечная ткань, эпителий половых желез, эндометрий, структуры печени, почек. Витамин Е необходим для профилактики и лечения злокачественных опухолей, сердечнососудистых заболеваний, атеросклероза. При гипервитаминозе отмечаются нарушения в свертывающей системе крови, тромбоцитопатии.

Для определения количественного состава микроэлементов и витаминов в сыворотке крови используется метод высокоэффективной жидкостной хроматографии. Он относится к современным хроматографическим методам анализа. Хроматография — это метод разделения и определения веществ, основанный на распределении компонентов между двумя фазами — подвижной и неподвижной. Жидкостная хроматография — метод разделения и анализа сложных смесей веществ, в котором подвижной фазой является жидкость. Он позволяет разделить и выявить количественно более широкий круг веществ с различной молекулярной массой и размерами.

Цель исследования: целью данного исследования является изучение морфологических изменений в сердечной ткани крыс, вызванных дефицитом микроэлементов. Исследование направлено на выявление патоморфологических изменений, связанных с недостатком ключевых микроэлементов, таких как железо, цинк, медь и селен, а также их влияние на структуру и функциональное состояние миокарда. Результаты данного исследования помогут лучше понять механизмы, лежащие в основе сердечно-сосудистых заболеваний, ассоциированных с микроэлементозом, и могут способствовать разработке профилактических и терапевтических стратегий для улучшения сердечного здоровья.

Материал и метод исследования

В эксперименте использовано 30 белых беспородных крыс четырехмесячного возраста обоего пола со средней массой тела $170,5\pm9,1$ г. Все лабораторные животные были получены из одного и того же вивария и содержались в стандартных условиях с относительной влажностью (50-60%), температурой ($19-22^{\circ}$ C) и световым режимом (12 часов темноты и 12 часов света).

В целях профилактики инфекционных заболеваний животных помещали на карантин на 21 день, в течение которого проводился мониторинг их состояния: измерялась температура и проверялся вес несколько раз. Прирост массы тела отслеживался, и в этот период не наблюдалось никаких симптомов заболевания; температура оставалась в пределах нормы (38,5-39,5°C), нарушений аппетита и других внешних изменений не выявлено.

Животные были разделены на 2 группы:

1-я группа со стандартным виварийным рационом питания

2-я группа животных со специальным кормом в составе которого отсутствует (магний, цинк, селен и железо).

На 22-е сутки после начала эксперимента животных выводили под эфирным наркозом с соблюдением правил эвтаназии, осуществляя забор аутопсийного материала для последующего гистологического исследования (сердечная ткань). Аутопсийный материал маркировали, фиксировали в 10% буферированном формалине и подвергали гистологическому исследованию с использованием общепринятых методик. Количественный (морфометрический) анализ образцов проводился с помощью специализированного программного обеспечения.

Для изучения морфологических показателей сердечной ткани применялись методы, широко используемые в экспериментальных исследованиях (анатомическое препарирование). Все гистологические препараты просматривали с помощью тринокулярного микроскопа HL-19 (Китай) с соответствующим программным обеспечением. Гистологические препараты готовили согласно стандартным методикам, а срезы окрашивали гематоксилином и эозином по методу Ван Гизона.

Результат и обсуждение

Сердце крысы расположено в грудной полости, почти полностью окружено легкими и свободно только в передне-нижней области. Сердце взрослой крысы в среднем составляет 1-3 грамма, а его вес зависит от массы тела, при этом сердечный индекс (отношение массы сердца к массе животного) составляет в среднем 0,5-0,7, а у человека 0,004-0,006. Частота сердечных сокращений и ритм вегетативной и эндокринной систем, гемодинамические факторы [Де Карвалью Томазини Дж.А. Исследование сердца крыс линии Вистар на разных этапах эволюционного цикла. Int. J. Morphol. - Регулируется с 2014 года].

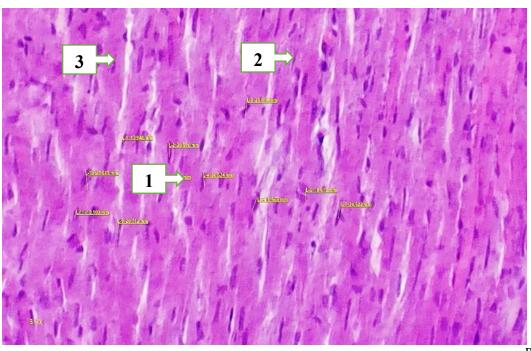


Рисунок 1.

Микроскопический вид сердечной мышца правого предсердия белой беспородной крысы контрольной группы. Окраска гематоксилин-эозином. Увеличение 40х20.

1-кардиомиоцит; 2-ядро кардиомиоцита; 3-рыхлая волокнистая соединительная ткань расположена между клетками сердца

На микроскопическом изображении сердечной мышцы правого предсердия белой беспородной крысы контрольной группы, окрашенной гематоксилин-эозином при увеличении 40х20, наблюдаются характерные морфологические особенности. Присутствуют кардиомиоциты (1), которые имеют четко выраженные ядра (2), что свидетельствует о нормальной структуре сердечной ткани. Между кардиомиоцитами расположена рыхлая волокнистая соединительная ткань (3), выполняющая поддерживающую и структурную функцию. Отсутствие патологических изменений в данном образце указывает на сохранность морфологии сердечной мышцы, что соответствует нормальному состоянию контрольной группы и может служить основой для дальнейших сравнений с экспериментальными группами, где ожидаются изменения, связанные с микроэлементозом.

Кровоснабжение сердца крысы обеспечивается левой и правой коронарными артериями; они не имеют большого количества коллатералей. Левая коронарная артерия проходит по интрамиокардиальному пути между левой ветвью и легочной артерией. У крыс нет истинной изгибающей артерии сердца. В ходе исследования мы обнаружили, что площадь мышечного компонента сердца 6-месячной крысы, которой давали централизованную питьевую воду, составляла в среднем 55-65%, стромы (коллагеновых и эластических волокон) - 30-35%, а кровеносных сосудов - 15-17% у крыс 3-месячного возраста старый, а площадь мышечной составляющей сердца составляла в среднем 65-70%, стромы (коллагеновых и эластических волокон) - 15-17%, а кровеносных сосудов - 18-20%.

Миокард образован группами кардиомиоцитов, формирующих мышечные волокна. На гистологических срезах сократительные кардиомиоциты изображены в виде клеток с умеренно окрашиваемым гематоксилином палочковидным ядром на фоне эозинофильной цитоплазмы с хорошо контурируемым рисунком миофибрилл. В строме заложены сосуды разного калибра. Интрамуральные артерии среднего и мелкого калибра умеренно кровенаполнены. Выстилающий их эндотелий несколько уплощен, его цитоплазма слабо базофильна, ядра вытянутые. Артериолы извитые, с небольшим количеством эритроцитов, эндотелиоциты располагались на некотором расстоянии друг от друга, ядра их эухромные, базофильные. Вены и венулы умеренно извиты, расширены, полнокровны; ядра эндотелиоцитов также четкие, эухромные. Капилляры незначительно расширены извиты, полнокровны.

Эпикард сращен с миокардом и представлен тонкой соединительно-тканной пластинкой, покрытой мезотелием и состоящей из переплетающихся умеренно фуксинофильных коллагеновых волокон и тонких эластических волокон.

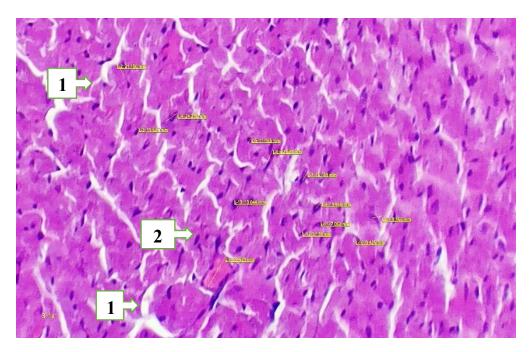


Рисунок 2.

Микроскопический вид сердечной мышца правого предсердия белой беспородной крысы экспериментальной группы. Окраска гематоксилин-эозином. Увеличение 40х20.

1 - утолщение (набухание) рыхлой волокнистой соединительной ткани, расположенной между клетками сердца; 2 - увеличение диаметра капилляров, в которых происходит застой крови

На микроскопическом изображении сердечной мышцы правого предсердия белой беспородной крысы экспериментальной группы, окрашенной гематоксилин-эозином при увеличении 40х20, наблюдаются выраженные морфологические изменения. Утолщение (набухание) рыхлой волокнистой соединительной ткани (1) между кардиомиоцитами свидетельствует о развитии фиброза, что может указывать на адаптивные или патологические процессы в ответ на стрессовые факторы или повреждения. Увеличение диаметра капилляров (2), сопровождающееся застойными явлениями, указывает на нарушение микроциркуляции и может быть связано с ишемией или перегрузкой кровеносной системы. Эти изменения в структуре сердечной мышцы могут негативно сказываться на функциональной активности сердца и требуют дальнейшего изучения для понимания их этиологии и патогенеза в контексте микроэлементозов.

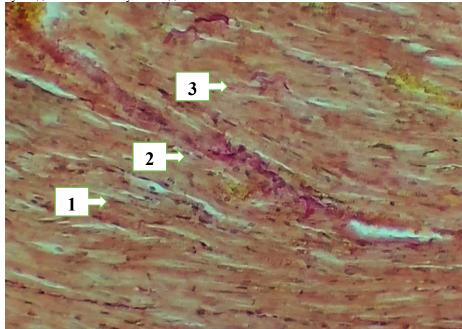


Рисунок 3

Микроскопический вид сердечной мышца правого предсердия белой беспородной крысы экспериментальной группы. Окраска по методу Ван-Гизона. Увеличение 40х20. 1 - утолщение (набухание) разреженной волокнистой соединительной ткани, расположенной между клетками сердца; 2 - окрашивание

коллагеновых волокон в фиолетовый цвет (процесс фиброзирования кардиомиоцитов по окружности микрокапилляров (периваскулярный);3- Наблюдается волнообразная линеаризация кардиомиоцитов

На микроскопическом изображении сердечной мышцы правого предсердия белой беспородной крысы экспериментальной группы, окрашенной по методу Ван-Гизона при увеличении 40х20, наблюдаются значительные морфологические изменения. Утолщение разреженной волокнистой соединительной ткани (1) между кардиомиоцитами указывает на развитие фиброза, что может свидетельствовать о компенсаторных или патологических процессах в сердечной мышце. Окрашивание коллагеновых волокон в фиолетовый цвет (2) демонстрирует активный процесс фиброзирования кардиомиоцитов, особенно в периваскулярной области, что указывает на нарушения микроциркуляции и ишемию. Волнообразная линеаризация кардиомиоцитов также подчеркивает изменения в их структуре, что связано с адаптацией к хроническому стрессу (микроэлементозу) или повреждениям. Эти морфологические изменения требуют дальнейшего изучения для понимания их влияния на функциональную активность сердца и общей патологии в условиях эксперимента.

Заключение

На микроскопических изображениях сердечной мышцы правого предсердия белой беспородной крысы контрольной группы, окрашенной гематоксилин-эозином, наблюдаются нормальные морфологические характеристики, что свидетельствует о сохранности структуры сердечной ткани. Четко выраженные ядра кардиомиоцитов и наличие рыхлой волокнистой соединительной ткани подтверждают адекватное состояние миокарда и отсутствие патологий.

В отличие от контрольной группы, в экспериментальной группе, также окрашенной гематоксилин-эозином, выявлены выраженные морфологические изменения, такие как утолщение рыхлой волокнистой соединительной ткани и увеличение диаметра капилляров. Эти изменения указывают на развитие фиброза и нарушения микроциркуляции, что может быть связано с адаптацией к стрессовым факторам или патологическими процессами.

Дополнительно, окрашивание по методу Ван-Гизона в экспериментальной группе продемонстрировало активное фиброзирование кардиомиоцитов и волнообразную линеаризацию клеток, что подчеркивает структурные изменения в ответ на хронический стресс, вероятно, связанный с микроэлементозом. Эти наблюдения подчеркивают необходимость дальнейшего изучения морфологических изменений для понимания их влияния на функциональную активность сердца и общей патологии в условиях эксперимента.

Микроэлементоз пагубно влияет на состояние сердца, приводя к воспалительным процессам, разрастанию фиброзированной ткани и гибели кардиомиоцитов. Эти изменения способствуют нарушению нормальной функции миокарда и ухудшению его сократительной способности. В результате наблюдается полнокровие сосудов и утолщение их стенок, что может привести к дальнейшим осложнениям, включая ишемию и сердечную недостаточность. Таким образом, микроэлементоз является значимым фактором, способствующим развитию патологических изменений в сердечно-сосудистой системе, что требует тщательного мониторинга и разработки методов коррекции для предотвращения серьезных последствий.

СПИСОК ЛИТЕРАТУРА:

- Nieschlag E, Behre HM. Andrology: male reproductive health and dysfunction.-Berlin: Heidelberg, 2010.
- Geens T, Neels H, Covaci A. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver 2. and brain. Chemosphere. 2012;87(7):796-802.
- Hond ED, Tournaye H, Sutter PD, Ombelet W, Baeyens W, Covaci A, Cox B, Nawrot TS, Larebeke NV, D'Hooghe T. 3. Human exposure to endocrine disrupting chemicals and fertility: A case-control study in male subfertility patients. Environment International. 2015;8(4):154-160.
- Li X, Ying G, Zhao J, Chen Z, Lai H, Su H. 4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. Environment International.
- Pirard C. Sagot C. Deville M. Dubois N. Charlier C. Urinary levels of bisphenol A. triclosan and 4-nonylphenol in a 5. general Belgian population. Environment International. 2012;48:78-83.
- Watanabe S., Wang R.-S., Miyagawa M., Kobayashi, Suda M., Sekiguchi S., Honma T. Disbalans urovnej testosterona 6. u samcov potomkov krys, podvergavshihsya vozdejstviyu bisfenola A v perinatal'nyj period// Promyshlennoe zdorov'e.-2003.- T. 41.- S. 338-341.
- Salian S, Doshi T, Vanage G. Neonatal exposure of male rats to bisphenol A impairs fertility and expression of Sertoli 7. cell junctional proteins in the testis. Toxicology. 2009;2(65):56-67.
- Liu C, Duan W, Li R, Xu S, Zhang L, Chen C, He M, Lu Y, Wu H, Pi H, Luo X, Zhang Y, Zhong M, Yu Z, Zhou Z. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis. 2013;4(5):676.
- Qiu L.L, Wang X, Zhang X.H, Zhang Z, Gu J, Liu L, Wang Y, Wang X, Wang S.L. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol Lett. 2013;2(19):116-124.
- Kumar V, Chakraborty A, Kural M, Roy P. Alteration of testicular steroidogenesis and histopathology of reproductive 10. system in male rats treated with triclosan. Reprod Toxicol. 2009;2(7):177-185. http://dx.doi.org/ 10.1016/j.reprotox.2008.12.002.

Поступила 20.10.2024

